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Abstract: A detailed analysis of nitrogen-15 longitudinal relaxation times in microcrystalline proteins is
presented. A theoretical model to quantitatively interpret relaxation times is developed in terms of motional
amplitude and characteristic time scale. Different averaging schemes are examined in order to propose an
analysis of relaxation curves that takes into account the specificity of MAS experiments. In particular, it is
shown that magic angle spinning averages the relaxation rate experienced by a single spin over one rotor
period, resulting in individual relaxation curves that are dependent on the orientation of their corresponding
carousel with respect to the rotor axis. Powder averaging thus leads to a nonexponential behavior in the
observed decay curves. We extract dynamic information from experimental decay curves, using a diffusion
in a cone model. We apply this study to the analysis of spin-lattice relaxation rates of the microcrystalline
protein Crh at two different fields and determine differential dynamic parameters for several residues in the
protein.

1. Introduction

Determination of molecular dynamics is essential to structural
studies of proteins, since internal motion is a fundamental
modulator of structure-function relationships.1 Solution state
NMR,2-4 as well as computer simulations,5 supply a rich insight
into fast motions of the protein backbone. So far, the widespread
study of internal motions in solid protein samples has been
limited by the lack of suitable experimental protocols.

Very recently solid state NMR methods have been developed
which allow the study, at an atomic scale, of microcrystalline
proteins in the solid state: high resolution MAS spectra recorded
on fully labeled samples have led to complete structural6-8 stud-
ies of model systems. In this context, carrying on from previous
pioneering studies,9-11 we have shown that it is possible to

record individual longitudinal relaxation rates and obtain wide-
spread, site-specific information about the variations in nitrogen-
15 spin-lattice relaxation rates along the protein backbone.12

Nitrogen-15 spins can be considered as local probes for the study
of internal mobility in solid proteins.9 We observed in the protein
Crh that the qualitative analysis of relaxation rates allows for a
possible distinction between flexible and more rigid parts of
the backbone.12

In this article we present further development of the theoreti-
cal model initially proposed by Torchia and Szabo9 to quanti-
tatively determine fluctuations in local dynamics and distinguish
between time scale and motional amplitude effects. Notably,
we examine different averaging schemes in order to propose
an analysis of relaxation curves that takes into account the
specificity of magic angle spinning (MAS) experiments. In
particular, we show that MAS averages the relaxation effects
experienced by a single spin over one rotor period, resulting in
individual relaxation curves that then depend on the orientation
of the corresponding carousel angle with respect to the rotor
axis. Powder averaging thus leads to a nonexponential behavior
in the observed decay curves. Finally, we apply this study to
the analysis of spin-lattice relaxation rates for the microcrys-
talline protein Crh at two different magnetic fields.

2. Theory

In this section we will develop a formalism to predict spin-
lattice relaxation curves in powdered solids undergoing MAS.
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We develop this model for dipolar relaxation due to sufficiently
fast internal motions of the N-H bond vector, which places us
within the limits of Redfield relaxation theory.13,14 Many
previous studies have used Redfield theory to predict relaxation
properties in solids,15-17 notably for deuterium. A particularly
interesting study was carried out by Varner et al.,18 where they
considered carbon-13 relaxation times for the extreme narrowing
limit, extending the work of Torchia and Szabo. In this article,
we simply concentrate on an approach adapted to the problem
at hand, which is valid for all time scales within the validity of
Redfield theory.

2.1. Longitudinal Relaxation in Solids. We consider the
amide group in a peptide bond and assume nitrogen-15
relaxation is due to the15N-1H dipole-dipole coupling,
neglecting the anisotropy of the chemical shift (which could be
incorporated into the model). In this case the longitudinal
relaxation rate (R1) can be written17

whereγN andγH are gyromagnetic ratios of15N and 1H, h is
Planck’s constant, and〈rNH〉 is the effective15N-1H distance
(considering vibrational motions). For the calculations described
herein, 〈rNH〉 was set to 1.02 Å. Finally,Jm(ω) is a spectral
density function defined as13,14,19

whereGm(t) is an autocorrelation function which depends on
the nature of15N-1H bond motion and the choice of the frame
in which it is described. In the most simple case of a single
orientation of a given N-H vector in a static sample of protein
fixed in the laboratory frame,Gm(t) is given by

where Y2m are spherical harmonics andΘ(t) describes the
orientation of the N-H vector2 with respect to the laboratory
frame. In the following we choose to assume that the15N-1H
bond dynamics is well described by free diffusion, with a
diffusion constantDw, within a cone of semiangleθ0 (though
we could choose other motional models; see section 3). We
also assume that the protein molecule undergoes no overall
tumbling (this is the principle difference with respect to solution
state models for relaxation).

Although there is no analytical expression forGm(t) in the
case of this diffusion in a cone model, Lipari and Szabo20 have

proposed time-dependent Pade´ approximants to correlation
functions of second-order spherical harmonics within this
motional model. Notably, whereas for a system in solution
correlation functions do not depend on the orderm of the
spherical harmonics, in the solid state the absence of overall
tumbling requires that we calculate individuallyJ0(ω), J1(ω),
and J2(ω) in order to account for the molecular orientation
dependence of relaxation rates with respect to the external
magnetic field. The expressions for these autocorrelation func-
tions are11

where

andx0 ) cosθ0. The resulting single-exponential approximations
for Gm(t) are highly accurate for 0< θ0 < 90° whenm ) 0,
(2 and for 0< θ0 < 75° whenm ) (1 (which should be a
reasonable range for more or less rigid residues in a crystalline
system).

In magic angle spinning experiments, we need to consider
that the sample is a powder composed of crystallites with an
isotropic distribution of orientations in a rotor which is spinning
about an axis oriented at the magic angle with respect to the
magnetic field. Thus, the orientation of the N-H vector,
responsible for relaxation, depends on the orientation of the
crystallite and the instantaneous rotor position. We thus describe
the time-dependent orientation of any given N-H vector through
the following series of reference frames.11 Diffusion in a cone
is described by going from the principal axis coordinate system
P to the crystal-fixed coordinate system C. The powder
orientations are taken into account by going from C to a rotor
fixed system M, and finally MAS is taken into account through
rotation of M to the laboratory frame L. This series of reference
frames is illustrated schematically in Figure 1.
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With respect to this decomposition each autocorrelation
function can be expressed in the laboratory frame as11

with (a ) 0, (1, (2) and whereDab
(2) are Wigner rotation

matrix elements17 and Dab
(2)* are the corresponding conjugate

matrix elements. Rotations through Euler angles23 ΩCM ) (RCM,
âCM, γCM) andΩML ) (RML, âML, γML) bring, respectively, the
frame C into coincidence with the frame M and the frame M
into coincidence with the frame L, as shown in Figure 1.Gm(t)
is the autocorrelation function expressed in the crystal frame
C.20

Torchia and Szabo11 proposed that, for a powder under MAS,
the measuredR1 obtained from the initial slope of the relaxation
curves can be described by a unique correlation function,
obtained from double averaging ofGm(t) over the powder and
the rotor orientations, insofar as

(whereωr is the rotor spinning speed (s-1)):

Note that while in solution calculations the autocorrelation
function decays to zero due to overall tumbling, in solids where
the motion is restrictedCTS(t) does not decay to zero on a time
scale relevant to Redfield theory. Nevertheless, since we are
only interested in the fluctuating part of this function, for
longitudinal relaxation we can legitimately only consider its
Fourier transform for valuesω * 0 without introducing any
errors. (Note that this is not the case for transverse relaxation
rates.)

2.2. Orientation and Time Dependence of Longitudinal
Relaxation in Solids. The double averaging approach was
particularly useful in the absence of powerful computers, since
it provided a simple orientation-independent single-exponential
expression forT1 that was easy to evaluate. In the following
we propose an “explicit averaged sum” (EAS) approach to
calculating the relaxation curves that accounts for the orientation
dependence of the relaxation rates and can today be easily
evaluated.

A longitudinal relaxation curve is the sum of signals from
molecules in all the crystallites making up the powder, each of
them being a priori modulated by MAS. We can thus distinguish
two kinds of angular dependence forCa(t). First, in each single
crystallite, the relaxation rate is modulated by the variation of
RML from 0 to2π due to sample rotation. Second, the crystallite
orientation dependence is described through variations ofâCM

(from 0 to π) and γCM (from 0 to 2π). In this way, theCa(t)
appear as a linear combination of orientation and time dependent
terms:

Figure 2 shows the orientation dependence of the longitudinal
relaxation rate for a nitrogen-15 nucleus bound to a proton,
without magic angle spinning, which diffuses in a cone with a
diffusion timeτw ) 1/6Dw ) 6.6× 10-8 s and semiangleθ0 of
11.2° and 45°, respectively. We can see that in fact the relaxation
rate, R1

cryst, is strongly anisotropic. It is faster when the
interaction vector is either parallel to the external magnetic field
or perpendicular to it and is slow when the vector is oriented at
the magic angle with respect to the field. Furthermore, when
the motion is less restricted, we observe that the relaxation rate
becomes less sensitive to the orientation of the15N-1H bond.

In addition to the anisotropy of the relaxation rate shown in
Figure 2, for a given orientation of the interaction vector in the
rotor, a modulation due to MAS of the relaxation rate can also
be expected. Figure 3 shows the variations ofR1

cryst with
respect to the orientation of the15N-1H bond in the rotor: we
note that rotor position can be varied through eitherγCM or RML,
which are equivalent (indeed, henceforth we will only refer to
γCM, except in eq 14, where it is more logical to useRML). From
this figure, we can see that, for a givenâCM, a 15N spin will

(21) Böckmann, A.; Lange, A.; Galinier, A.; Luca, S.; Giraud, N.; Juy, M.;
Heise, H.; Montserret, R.; Penin, F.; Baldus, M.J. Biomol. NMR2003, 27
(4), 323-339.

(22) Juy, M.; Penin, F.; Favier, A.; Galinier, A.; Montserret, R.; Haser, R.;
Deutscher, J.; Bo¨ckmann, A.J. Mol. Biol. 2003, 332, 767-776.

(23) Rose, M. E.Elementary Theory of Angular Momentum; John Wiley: New
York, 1957.

Figure 1. Reference frames used to describe nitrogen-15 relaxation. (The microscope view shows microcrystals of the protein Crh.21,22)
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undergo a time-dependent relaxation rate asγCM varies over a
rotor period.

If we consider a carousel24 of 15N-1H bonds having the same
âCM angle, their orientations can be interchanged by a rotation
about the spinning axis, and so each of them will undergo the
same overall modulation ofR1

cryst over a rotor period which is
shown in Figure 4a. Figure 4b then shows the relaxation curves

calculated either for a crystallite undergoing slow MAS or for
the same crystallite undergoing the corresponding average
relaxation rate. Both curves are numerical solutions to the
modified Bloch equation for longitudinal relaxation25:

whereMz(t) is the nitrogen-15 longitudinal magnetization and
(24) Antzutkin, O. N.; Song, Z. Y.; Feng, X. L.; Levitt, M. H.J. Chem. Phys.

1994, 100 (1), 130-140.

Figure 2. Orientation dependence of nitrogen-15 longitudinal relaxation rate.R1
cryst is plotted for two motional amplitudes (θ0 ) 11.2° and 45°), in spherical

coordinates as a function of the orientation of the15N-1H bond with respect to the external magnetic field B0. The interaction vector is wobbling with a
diffusion timeτw ) 1/6Dw ) 6.6 × 10-8 s. Relaxation rates are calculated for a 500 MHz proton frequency. The figure is shown color coded with respect
to the value ofR1

cryst for each amplitude (note that the color codes goes from the maximum to the minimum relaxation rates for both models and are slightly
different).

Figure 3. Dependence of nitrogen-15 longitudinal relaxation rate on orientation of15N-1H bond in the rotor frame: the15N-1H bond is assumed to wobble
with a diffusion timeτw ) 1/6Dw ) 6.6× 10-8 s in a cone of semiangleθ0 ) 11.2°. R1

cryst is calculated from eq 1, using autocorrelation functionsCa(t) from
eq 7, for a 500 MHz proton frequency.

d(Mz(t) - M z
0)

dt
) -R1[RML(t)](Mz(t) - M z

0) (8)
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M z
0 the initial magnetization. Initial conditions are set such that

(Mz(t ) 0 s) - M z
0) ) 1.

The curve resulting from MAS modulation fluctuates around
the “average” relaxation curve that would be expected for
relaxation with anR1 averaged over the rotor phase. Even at a
rotor frequency of 1 Hz, the fluctuation is very weak on the
time scale of the relaxation curve, and it becomes negligible at
higher spinning speeds. As a result, we can assume that, for a
given carousel (defined byâCM), each crystallite undergoes an
averagedR1:

2.2.1. Validity of the Averaging Scheme.Note that a priori
we would imagine that the approach to handling the time
dependence introduced by magic angle spinning is valid if (i)
this time dependence is much shorter than relaxation timesT1

andT2: ωrT1,2 . 1 and (ii) it is much longer than the correlation
time τC: ωrτC , 1. Interestingly, we find that condition (ii) is
in fact not necessary, as follows. In this scheme, in addition to
a periodic variation due to the passage to the interaction frame
with frequencies(ωL, (2ωL, some of the random interaction
terms also experience a periodic fluctuation due to the rotation
of the sample, with frequencies(ωr, (2ωr. For such terms the
correlation function has a periodic and random evolution of the
form

This yields a spectral density

The spinning frequency is in practice much lower than the
Larmor frequency, and in general only terms withp ) 0 can
give results that are significantly sensitive to rotation. Therefore,
there is no significant contribution of this type to longitudinal
relaxation. Moreover, these terms correspond to secular dipolar
terms with respect to the Zeeman interaction and would not
therefore contribute to transverse relaxation. The resulting line
broadening should not be visible on the residual line width under
MAS. One case where the sample could be sensitive to the
spinning frequency is the study of transverse relaxation under
radio frequency fields. In this case, frequencies(ω1, (2ω1 due
to passage to the doubly rotating frame should be taken into
account. One other case is the study of cross relaxation between
spins with close resonance frequencies (p * 0), where we would
haveωL

i - ωL
j ) ωr. Thus eq 9 is validated.

2.3. Evaluation of Spectral Densities.R1
MAS(âCM) can also

be expressed as a function of the spectral densitiesJi
MAS(ω)

which result from the same average over rotor positions:

where

eachCij
MAS(â1) is expressed as follows:

Figure 4. (a) Modulation of nitrogen-15R1
cryst as a function of rotor position (solid blue line), for a crystallite making an angleâCM ) π/2 with respect to

the rotor axis, compared to the nitrogen-15R1 averaged over the rotor position for the same crystallite (dashed gray line). The15N relaxation rate is calculated
for a 15N-1H bond with the same parameters as those for Figure 3. (b) Simulated relaxation curves for a nitrogen-15 nucleus undergoing modulatedR1

cryst

(solid blue line) and for the same nitrogen-15 undergoing the single averageR1 (dashed gray line). The rotor spinning speed is 1 Hz.

R1
MAS(âCM) ) 1

4(γHγN

〈rNH〉3

h
2π)2

[J0
MAS(ωH - ωN) + 3J1

MAS(ωN) +

6J2
MAS(ωH + ωN)] (12)

Ji
MAS(ω) )

1

2π
∑

j)-2

2

Cij
MAS(â1) ×

[Gj(0) - Gj(∞)]τi
eff

1 + (ω τj
eff)2

(13)

R1
MAS(âCM) ) 1

2π∫RML)0

2π
R1

cryst(γCM, âCM) dγCM (9)

G(t) ) e[i(pωL+qωr)-1/τC]t. (10)

J(pωL + qωr) )
τC

1 + (pωL + qωr)
2τC

2
. (11)

A R T I C L E S Giraud et al.

18194 J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005



To handle exact spectral densities and thus evaluate rigorous-
ly relaxation curves resulting from a powder, we have fur-
ther developed these expressions using the Maple software.26

Cij
MAS(â1) is of the form

The computation of thecij
λ coefficients leads to numerical

expressions that are detailed in the Supporting Information.
The nitrogen-15 longitudinal relaxation rate still depends on

the orientation of the15N-1H bond in the powder throughâCM.
Figure 5a shows variations ofR1

MAS within the powder, under
MAS. The signal acquired during a relaxation experiment is
the sum of contributions from all orientations. Three cases may
be considered. The first is the signal resulting from the
orientation weighted explicit sum of relaxation curves for each
value ofâCM in the powder under MAS (that we refer to as the
“explicit averaged sum (EAS),” which can be obtained from
eq 9 to be

This is compared with the decaying curve explicitly evaluated
for a static powder from eq 6:

Finally we compare this with the model from Torchia and
Szabo11 of a single-exponential curve whose relaxation rate is
given by

Note thatR1
TS in eq 18 is defined as follows:11

whereJTS(ω) is the Fourier transform ofCTS(t) introduced in
eq 6:

We can see that formally this is equivalent to expressingR1
TSas

a powder average of local relaxation ratesR1
cryst:

Finally, we remark that in order to calculate (and fit) inversion
recovery curves, we can evaluate discrete sums for eqs 16 and
17 to obtain

and

respectively, whereNγ andNâ are the number of discrete powder
angles used in the sum.

Figure 5b shows simulations of the decaying curves that
would be recorded from a powder under MAS, according to
our model of eq 16a, and from a powder without MAS (eq 17a)
and the exponential curve calculated from R1

TS for the same
dynamics (eq 18). We note that, in the first two cases, using
the explicit sum and averaged-sum models, these curves are
nonexponential. Second, it is apparent that MAS significantly
alters the relaxation curve as compared to the case of a static
powder, for the same dynamics. Third, we see that the difference
between the relaxation curve calculated with our explicit
averaged sum (EAS) and the exponential approximation model,
which is designed to be the best fit to the initial slope of the
exact curve, is actually quite small. Figure 6 shows the
difference between relaxation rates calculated using the single-
exponential model (eq 18) and those obtained by fitting curves
calculated using the EAS model (eq 16a) to a single-exponential
function. The difference is plotted as a function of the diffusion
time constant and the semiangle of the cone. This figure
illustrates the degree of error that would be induced by not using
the EAS model. For very rapid motions, at this field strength,
we see that the error can be of the order of 20% of the measured
relaxation rate.

In conclusion, we see that the EAS model developed here
provides a more accurate prediction of relaxation rates and that

(25) Solomon, I.Phys. ReV. 1955, 99 (2), 559-565.
(26) MaplesoftMaple, 9.50; 2004.
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∫∫
γCM)0;2π
âCM)0;π

sin(âCM) dâCM dγCM

(21)

Iexp(t) ≈ I0
exp ×

∑
b)0

Nâ-1

exp[-R1
MAS((b + 0.5)π

Nâ
)t] sin((b + 0.5)π

Nâ
)

∑
b)0

Nâ-1

sin((b + 0.5)π

Nâ
)

(16a)

Istatic(t) ≈ I0
static ×

∑
a)0

Nγ-1

∑
b)0

Nâ-1

exp[- R1
cryst(2aπ

Nγ

,
(b + 0.5)π

Nâ
)t] sin((b + 0.5)π

Nâ
)

Nγ ∑
b)0

Nâ-1

sin((b + 0.5)π

Nâ
)

(17a)
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in certain cases significant errors could be induced by using
the simplified model. We propose therefore to determine
dynamic parameters from relaxation curves by simulating the
full powder MAS dependence as given by eq 16 above.

We note that since an informative dynamic model uses at
least two parameters to describe the motion (as is the case for
the diffusion in a cone model used here (amplitude and rate)),
it is of course impossible to determine the motion from a single
relaxation measurement. Many strategies have been proposed
in the literature, for both solids and liquids, to address this
problem. In the following section we evaluate the field

dependence of nitrogen-15 longitudinal relaxation in powders
as a potential method to better define the dynamic parameters,
and we show experimental results at two fields.

3. Magnetic Field Dependence of Longitudinal
Relaxation Rates

As an indicator of field dependence, Figure 7 shows a contour
plot of R1

eff extracted by fitting curves calculated using eq 16,
for a proton frequency of 500 MHz, as a function of the
amplitude and the rate of the motion. Before continuing, we
remark that the value of the diffusion time (τw), at whichR1

eff is

Figure 5. (a) Modulation of nitrogen-15R1
MAS as a function ofâCM, calculated with the same parameters as those for Figure 3. (b) Simulated nitrogen-15

relaxation curves for a powder undergoing MAS (blue), for a static powder (red), and an exponential curve corresponding to the initial slope of the relaxation
curve of a powder under MAS (grey).

Figure 6. Plot of ∆R1/R1 ) (R1
TS - R1

eff)/R1
eff as a function of15N-1H bond dynamics.R1

eff is calculated by least-squares fitting of the simulated
(nonexponential) relaxation curve calculated for a powder under MAS using a monoexponential function, over the same time range (15 s) as that for which
the corresponding experiments were carried out.R1

TS is calculated using eq 18. Each relaxation rate is calculated at a 500 MHz proton frequency.
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the fastest, depends on the motional amplitude (θ0). We note
that this is in fact purely due to the way in whichτw is defined
in this triple exponential model for the correlation function. If
we replot these data using an approximate single-exponential
model, we find that the position of the maximum rate no longer
depends onθ0. This latter case is reminiscent of what would

be expected from a model-free analysis, which by nature
assumes a single-exponential correlation function (the full
calculation of the model free version of this approach to
relaxation in solids is under way in our laboratory).

In Figure 8, we show the magnetic field dependence of spin-
lattice relaxation rates as calculated using the procedure
described above. We note that the difference in rates between
11.74 and 16.45 T varies with the parameters of the dynamics
assumed for the interaction vector but that, for motions in the
time scale that is probably of relevance, we expect a measurable
difference in relaxation rates, and thus we propose to use this
difference to constrain experimentally the model.

4. Experimental Determination of Motional Parameters
from Longitudinal Relaxation Curves

In a previous communication12 we presented measurements
of nitrogen-15 nuclear longitudinal relaxation rates in a micro-
crystalline sample of the protein Crh at 11.74 T. Here we use
the same experiment to measure15N R1’s at 16.45 T and propose
a procedure to extract a quantitative estimation of the15N-1H
bond motion along the protein backbone, using the diffusion in
a cone model. Furthermore, we present an error analysis of our
experimental data through indirect determination of standard
deviations inR1 at both fields.

Figure 9a shows the pulse sequence used to measure site
specific R1’s from triple-resonance 2D15N-13C correlation
spectra (the pulse sequence and phase cycle are available on
our web site27 or upon request). The principle of this sequence
is described elsewhere.12 Experiments were run under the same
conditions as those recorded at 500 MHz, and we obtained
N-COCA correlation spectra under Cosine Modulated (CM)
heteronuclear decoupling.28-30

Figure 9b shows a typical 2D spectrum (τ ) 1 s) for Crh.
From these spectra, we could obtain unambiguously relaxation
data from 31 resolved15N-13C cross-peaks (assignment21 shown
on spectrum) and compare relaxation rates at both 11.74 and

Figure 7. Plot of the effective longitudinal relaxation rate,R1
eff as a

function of 15N-1H bond dynamics (R1
eff is calculated by least-squares

fitting with a monoexponential function of the simulated nonexponential
relaxation curve from a powder under MAS, simulated over a range of 15
s for a proton frequency of 500 MHz). For each dynamics, the relaxation
curve was simulated on a 16 s relaxation delay from a distribution of 14
equally distributed values ofâCM, using numerical expressions for
R1

MAS(âCM) according to EAS.R1
eff was then calculated by fitting the

simulated relaxation curve from 2 points (at 1 and 15 s, which is a
compromise in order to estimateR1

eff with accuracy, while optimizing
computation time), resulting in a plot with 200 points in the diffusion time
dimension, and 125 points in the cone-angle dimension.

Figure 8. Difference between relaxation rates at 11.74 and 16.45 T. The parameters were the same as those for Figure 7.
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16.45 T for 29 residues. Experiments were carried out on a
Bruker Avance 700 MHz spectrometer using a 3.2 mm triple
tuned CPMAS probe, at a spinning speed of 12 kHz, on a
microcrystalline, uniformly labeled [15N, 13C] sample of the
protein Crh in its domain swapped dimeric form (2× 10.4

kDa).21,22,31 The probe temperature was set to-7 °C, which
corresponds to an effective sample temperature of about+8
°C. A series of spectra, withτ delays of 1, 14, and 7 s,
respectively, were recorded using the same renormalization
procedure as reported at 500 MHz.12 R1 data were then analyzed
from peak intensities. (See Supporting Information for further
details.)

Figure 10 shows typical decay curves measured for Asp 38
and Asp 69 at both fields. The accuracy of the evaluation of
the spectral densities depends critically on the measured error
in R1, which has several potential sources. First, despite
renormalization, the length of the experiments often leads to a
slight detuning of the probe and an inhomogeneous change in
intensity over the spectra due to cross polarization steps that
cannot be perfectly compensated. Second, it appears that during
the first few seconds of the decay curves, spin-lattice relaxation
is not the only phenomenon that causes evolution of magnetiza-
tion along the external magnetic field and that we have to
account for a re-equilibration of magnetization between nearest
neighbor nitrogens through spin diffusion, which causes an
additional dispersion in observed relaxation rates. This effect
will be considered in detail in a future article.

Although it is experimentally unreasonable to obtain a
significant statistical ensemble of measurements so as to
calculate the standard deviations, we can estimate that the
distribution of peak intensities is the same for each measured
point of the curve and is mainly due to noise. We assume that
this distribution is normal, and we estimate its standard deviation
σ to be 7.5% of the intensity atτ ) 1 s for each decay curve.
The experimental curves are then fitted to a single-exponential
decay curve with two parameters (initial intensity and relaxation
rate), and we calculate the standard deviation of each measured
rate by running a Monte Carlo simulation assuming that the
simulated intensities for the best fit are at the center of a
distribution.

Figure 9. (a) The pulse sequence used to record the nitrogen-15 carbon-
13 correlation spectra, resulting in spectra of the type shown in (b) for Crh
at 16.45 T. The1H-15N CP step was performed using a linear ramp (100%
to 70% of r.f. field strength) on the1H channel, with a 1.7 ms CP period
and an r.f. field strength of 50 kHz for15N. The 7 ms15N-13C cross-
polarization step used an adiabatic amplitude modulated tangential ramp
on the nitrogen channel with r.f. field strengths of about 62 kHz and 50
kHz for 13C and15N. The r.f. field strengths for the 90° pulses were 80
kHz for 1H and 50 kHz for15N. The proton decoupling field was set to 80
kHz for CM and CWLG. Quadrature detection was obtained with TPPI.
Each of the 375 increments int1 were acquired with 48 scans and a 3 s
recycle delay between scans, with maximum acquisition times of 12.5 ms
in t1 and 16.6 ms int2. Data were processed using zero-filling up to 1024
points int1, 4096 points int2, a square cosine filter, and automatic baseline
correction in both dimensions. Theτ ) 1 s spectrum was recorded in 20 h,
using about 6 mg of protein. Assignments are indicated according to
Böckmann et al.21

Figure 10. Decay curves measured at 16.45 T using three values of the relaxation delayτ, and which have been renormalized so that the initial intensities
of the best fit curves are equal, compared to curves recorded at 11.74 T,12 for Asp 38 and Asp 69.
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5. Results and Discussions

Figure 11 shows the best fit single exponentialR1 values
measured for Crh (numerical values and standard deviations are
given in the Supporting Information). First as expected from
the previously reported data at 500 MHz,12 we observe a
qualitative correlation between relaxation rate and expected
internal mobility forR1 measured at 700 MHz.

We are now in a position to estimate for each residue the
probability of a diffusion timeτw and a cone angleθ0 for the
15N-1H bond assuming diffusion in a cone. From the theoretical
study above, we calculateR1

eff[τc,θ0] by fitting the curve
calculated using eq 9 to a single exponential function which
we then compare to the fit values obtained from the data at
both fields. (Note that we could also directly compare the
predicted intensities in the curves with the data points.) We
assume now that each relaxation rateR1

exp that is determined
from experiment is at the center of a normal distribution as
defined in eq 22:

whereσ is the standard deviation, andR1
exp, the center of the

normal distribution. The probability for a given15N having the
experimental relaxation rateR1

exp, to wobble with a diffusion
time τw and a cone angleθ0, is proportional to

Hence, the probability for a15N with experimentally determined
longitudinal relaxation ratesR1[11.74T]

exp and R1[16.45T]
exp , to diffuse

in a cone of semi-angleθ0, with a diffusion time τw is
proportional to

where R1[B0]
exp is theR1 measured at the field B0, andR1[B0]

eff is the
calculated effective relaxation rate determined in section 2.
P(τc,θ0) measures the deviation between experimentally deter-
mined relaxation rates and the best fit for the determination of
dynamic parameters.

The probability functions were evaluated for 29 residues in
the protein Crh. For each residue,P(τc,θ0) is a combined
function of the quality of the experimental data (i.e., the
deviation inR1), and the resolution with which a given dynamic
behavior can be determined through the observation of a
crossing of curves resulting from a relaxation measurement at
two different fields. For 15 residues (V8, T12, G13, D38, G39,
K41, K45, I47, G49, L50, M51, T57, I64, D69, Q82) we
measure a rate and a cone angle with a reasonable accuracy.
Diffusion timesτw for these residues range from 5× 10-8 s to
5 × 10-7 s, and the cone angle ranges from 5° to 20°. (We
note at this stage that this corresponds to characteristic correla-
tion timesτ0, τ(1, τ(2 of the exponential contributions to the
overall correlation function of eq 4 having values ranging from
9 × 10-10 to 1.2× 10-8 for τ0, 1.7× 10-9 to 5.7× 10-8 for
τ(1, and 6.2× 10-10 to 2 × 10-8 for τ(2.)

To illustrate the analysis, we show three representative
determined probability distributions in Figure 12. G39 (in a loop)
and K41 (in aâ sheet) are seen to have probability distributions
that can be clearly easily distinguished. For K41, the cone angle
is poorly defined, but the diffusion rate constant is well
determined. We can also quite clearly distinguish between
distributions obtained for D38 and G39, which have similar
dynamics. The distributions for all residues are given in the
Supporting Information. The results are summarized in Figure
13 that shows a bar graph of diffusion times and cone angles
that were determined through the analysis of these probability

(27) http://www.ens-lyon.fr/CHIMIE/Fr/Groupes/NMR/Pages/library.html.
(28) De Paepe, G.; Elena, B.; Emsley, L.J. Chem. Phys.2004, 121 (7), 3165-

3180.
(29) De Paepe, G.; Giraud, N.; Lesage, A.; Hodgkinson, P.; Bo¨ckmann, A.;

Emsley, L.J. Am. Chem. Soc.2003, 125 (46), 13938-13939.
(30) De Paepe, G.; Hodgkinson, P.; Emsley, L.Chem. Phys. Lett.2003, 376

(3-4), 259-267.
(31) Galinier, A.; Haiech, J.; Kilhoffer, M. C.; Jaquinod, M.; Stulke, J.;

Deutscher, J.; Martin-Verstraete, I.Proc. Natl. Acad. Sci. U.S.A.1997, 94,
8439-8444.

Figure 11. A bar graph of measured best fitR1 vs residue number obtained from experiments using the sequence of Figure 11a, at 16.45 T (red) and 11.74
T (blue).

g(R1, R1
exp) ) 1

σx2π
exp[- (R1 - R1

exp)2

2σ2 ] (22)

P[R1
exp](τc,θ0) ∝ g(R1

eff[τc,θ0],R1
exp) (23)

P(τc, θ0) ) P[Rexp
1[11.74T],Rexp

1[16.45T]](τc,θ0)

∝ g(R1[11.74T]
eff [τc,θ0], R1[11.74T]

exp )

× g(R1[16.45T]
eff [τc,θ0], R1[16.45T]

exp ) (24)
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contour plots. (The accuracy of each measurement, and the shape
of the resulting dynamic distribution, can be estimated through
direct observation of the contour plots in the Supporting
Information.)

The observed variations from one site to another are coherent
with the differential dynamic behavior that might be expected
for the different secondary structures. In particular, in general,
residues located in loops (V8, D38, G39, T57) have larger cone
angles, whereas residues in helices and sheets (T12, G13, I47,
G49, L50, M51, I64, Q82) have smaller cone angles. (Note that
for the residue K41 inâ-sheet, the rate is accurately determined,
but the cone angle is not (see Figure 12)).

We note that residues located in loops, in particular D38,
G39, and T57, also appear to have faster diffusion rate constants
(τw < 1.7 × 10-7 s), while residues in helices and sheets such
as T12, G13, K41, G49, L50, M51, I64, and Q82 have slower
diffusion times (τw > 1.7 × 10-7 s).

Finally, we note that for some residues these data are not
sufficiently accurate to determine dynamic parameters. This can
be due to (i) the error in the measuredT1, (ii) the difference in
relaxation rates between 500 and 700 MHz is not large enough
to reliably constrain spectral densities, (iii) the simple diffusion
in a cone model does not provide a correct description of the
motion of the N-H vector, or (iv) deviations from the simple
dipolar mechanism to describe longitudinal relaxation used here.
This last point is particularly interesting. Obviously, the
nitrogen-15 CSA is expected to make an increasingly significant
contribution to relaxation as the field is increased, but there are
several other possible mechanisms that could be invoked and
that will need to be tested in the future; for example, cross
relaxation to neighboring nuclei (first and foremost of which
being the adjacent amide proton). Another source of relaxation
that has recently been proposed for carbon-13T1 in solid proteins
is due to paramagnetic oxygen that can be dissolved in the
vicinity of the hydrophobic side chains, as postulated by
Morecombe et al.32 Having said this, for nitrogen-15 the NH
dipolar coupling should logically be the dominant mechanism,
and the other interactions will be perturbations to quantitative
analysis.

All of these sources of error can be minimized. In the first
case, for example, we can improve the sensitivity of the
experiments, as well as the resolution of correlation peaks, for
instance by using recoupling methods which would allow us to
analyze N-CB correlations as well as N-CA. Moreover, we

Figure 12. Contour plots ofP(τc,θ0) for three residues :Asp 38 (red), Gly
39 (blue), and Lys 41 (dark green). (The relative vertical scales are indicated
in the extended figure in the Supporting Information.)

Figure 13. Bar graph for (above)τw and (below)θ0 of the 15 best dynamic parameters determined through the analysis of nitrogen-15 longitudinal relaxation
rates at two different fields (500 and 700 MHz), using the theoretical model described above. The asterisk on K41 indicates that for this residue the determination
of θ0 is unreliable (butτw is well determined).
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can include quite straightforwardly the contribution of chemical
shift anisotropy to the relaxation mechanism and use other
relaxation measurements to constrain spectral densities such as,
for example,1H-15N cross-relaxation. Finally, we can evaluate
the influence of other motional models on the quality of the
determination of dynamic parameters. These avenues are under
investigation in our laboratory.

6. Conclusions

In this paper we have presented a detailed analysis of
nitrogen-15 longitudinal relaxation times in microcrystalline
proteins. A theoretical model, based on and extending the model
proposed by Torchia and Szabo,11 is presented to quantitatively
interpret relaxation times in terms of motional amplitude and
characteristic time scale. Different averaging schemes were
examined in order to propose an analysis of relaxation curves
that takes into account the specificity of MAS experiments. In
particular, it was shown that magic angle spinning averages the
relaxation rate experienced by a single spin over one rotor period
and that this results in individual relaxation curves that are
dependent on the orientation of their corresponding carousel
with respect to the rotor axis. Powder averaging thus leads to a
nonexponential behaVior in the observed decay curves.

We showed how to extract dynamic information from
experimental decay curves and illustrated this using a diffusion
in a cone model. Obviously the method and conclusions
presented here can be extended to other motional models,
possibly better describing internal motion in these samples. We
can also develop expressions for other relaxation mechanisms,
notably to include the effect of nitrogen-15 CSA. The method
applies equally to the interpretation of deuterium relaxation
measurements,15,17which has traditionally been used as a probe
of dynamics in deuterium labeled proteins.10,16,33,34Notably, the
approach to measuring internal dynamics in proteins is of great

interest as a complementary method to both solution state NMR
and diffraction methods. In particular, relaxation studies in
solution are complicated by the superposition of internal motions
and overall tumbling, whereas in solid proteins only the internal
motion is present to contribute to relaxation.

We have applied this approach to the study of spin-lattice
relaxation rates measured at 11.74 and 16.45 T for the
microcrystalline protein Crh and have been able to determine
differential dynamic parameters for several residues in the
protein. Notably we observe generally smaller amplitude mo-
tions for secondary structures, as may be expected. We also
observe slower diffusion rate constants for residues in helices
and sheets than those in loop structures. The data and analysis
we present here clearly demonstrate that this is a viable method
of determining dynamics in crystalline proteins.

Supporting Information Available: 15N longitudinal relax-
ation rates (R1) measured for the different residues in micro-
crystalline Crh at 11.7412 and 16.45 T, and an estimation of the
standard deviation of each rate. Contour plots of the “ø2”
surfacesP(τc,θ0), as well as contours plots of the dynamic
parameters determined from the relaxation rates measured at
two different fields. Dynamic parameters extracted from the15N
longitudinal relaxation rates for the different residues in mi-
crocrystalline Crh. Numerical values forcij

λ coefficients calcu-
lated with Maple software in order to evaluateCij

MAS(â1). This
material is available free of charge via the Internet at
http://pubs.acs.org.

JA055182H
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